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Abstract

Recent evaluation indicates that wrong decisions resulting from systems operating based
on bad data costed worldwide about $30 billion in the year 2006. This work addresses
the importance of Data Quality (DQ) as a critical requirement in any information system.
In this regard, DQ criteria and problems such as missing entries, duplicates, and faulty
values are identified. Different approaches and techniques used for data cleaning to fix
DQ issues are reviewed. In this work a new technique is integrated into VISPLORE, a
framework for data analysis and visualization, that allows the framework to visualize
multiple types of per-value meta-information. We will show how our work enhances the
readability of the table lens view, one of the many viewing modes provided in VISPLORE,
and helps the user understand the status of data entries to decide on what entries need
to be cleaned and how. This work also expands on the interactive data cleaning tools
provided by VISPLORE, by allowing the user to manually delete implausible values or
replace them with more plausible ones, while keeping track of this cleaning process. With
the integrated new features to the table lens view, VISPLORE is now able to present
more detailed data with enhanced visualization features and interactive data cleaning.
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CHAPTER 1
Introduction

The advancement of digital technologies, mainly driven by smart devices and solutions,
internet and smartphones, and information & communication technologies (ICTs), is
penetrating all fields of our daily life. Digitization is simply defined as the process
of converting information into a digital format with the purpose of enabling the au-
tomation of different tasks for making them easy to control and less time consuming
( [Satyendra, 2016]). Digitization has been extremely expanded over the last years and is
currently on the way to conquer all areas of modern society encompassing information,
trades, banking and insurance, online services for hotel, travel and shopping, health,
education, management of energy demand, and the emergence of smart grids and smart
cities. This continuously evolving trend will shape our future and change our familiar life
environment. It is expected to improve the quality of life and making it more resource
efficient and sustainable.

One important and vital field of life that has been experiencing remarkable digitization
is the energy system spanning from the energy production to the transmission and
distribution up to the delivery of modern energy services covering heating, cooling,
lighting, cooking, processing, and mobility. Digital technologies will help us make our
energy systems more connected, intelligent, efficient, and sustainable ( [IEA, 2017]). This
trend is reflected in the ongoing transition towards clean energy systems characterized by
the increased contribution of intermittent renewable energy generations (e.g., photovoltaics
and wind) and significant improvement of energy efficiency in all consumption sectors like
building, industry, and transportation. The increased contribution of renewable energies
with their weather dependent intermittent behavior, requires increased management
effort to ensure the balance between energy demand and supply to achieve the required
supply security. On the supply side we need to employ various flexibility options like grid
flexibility and storage facilities for power and heat. On the demand side we need to employ
several measures supported by socio-economic incentives of consumers like demand side
management, load shifting, and load management. The successful implementation of
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1. Introduction

those measures relies upon digital applications such as smart appliances and devices,
smart electric grid, and shared mobility (e.g., car sharing). Operating, controlling, and
monitoring of these applications requires the employment of adequate ICT technologies
to manage the whole process that results in generating a big amount of data in short
periods of time. Big data requires an integrated process of data management to deal
with the measurement, acquisition, collection, and transfer of data and the subsequent
data processing to evaluate and visualize the data.

One important purpose of such an undertaking is to generate useful information and
extract key indicators to monitor the performance of the whole energy system and
support the decision-making process in ensuring affordable, reliable, and sustainable
energy services for the end consumers ( [IEA, 2017]). An Essential part of this process is
the visualization of the collected data and the subsequent extraction of related performance
indicators. As example for processing of selected energy consumption data, one might
consider the hourly electricity and gas consumption in different districts of the city
Vienna. Visualization of the consumption delivers valuable information about the time
and magnitude of the peak demand (e.g., daily, weekly, and annually) of both energy
forms. Based on that the load factors can be extracted as key indicators to optimize the
electricity and gas supply of the considered districts. One can also bring the consumption
in relation with the external temperature and thus understand the impact of weather
conditions on the consumption of both energy forms and make use of that for future
demand projection. Processing data to extract information however is beyond the scope
of this work, and instead data visualization is the focus here.

It is the visualization of big data that makes them meaningful and reveals their scientific
value in order to conduct further consultations and come to tangible conclusions. Visual-
ization helps data analysts to locate where data are faulty or missing, beside identifying
anomaly and inconsistency of the measured data for the purpose of detecting devices
malfunction and identify responsible entities to fix bugs and intervene to rectify the
malfunction in due time ( [Kern and Zinck, 2016]). Finding solutions to deal with the
problem of the observed anomaly, errors, and missing of data is becoming increasingly
important in view of the emergence of big data management, like the above-mentioned
field of energy data that are characterized by periodic patterns.

With the variety of sources and types of data issues, it is advised to handle the whole
process of providing reliable, robust, and accurate data within a comprehensive procedure
of ensuring Data Quality (DQ) as a basis for enabling a data-based decision-making
process. Ensuring DQ is becoming a new vital requirement for the design of ICT systems
( [Ganapathi and Chen, 2016, Chen and Jiang, 2014]). DQ assurance is being assessed
by multiple dimensions called DQ metrics, many of them are based on the application
domain and the user’s needs. The most commonly DQ metrics refer to the following
aspects:

• Completeness.

• Validity.
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• Accuracy.

• Non-duplication.

• Consistency.

In all information systems, dirty data presents one of the biggest challenges that
impact the DQ metrics. Errors associated with dirty data originate from various
sources of data entry, measurement, distillation, and integration ( [Hellerstein, 2008]).
Dirty data can be exemplarily classified by the following groups ( [Swapna et al., 2016,
Dasu and Johnson, 2003]):

• Syntax errors such as typos and wrong formats.

• Semantical errors such as data layout and types (string vs. integral), format and
scale ($ vs. e), gaps in time series.

• Missing entries (i.e., nulls).

• Dummy values.

• Inconsistent values that contradict with other values.

• Cryptic or hidden data.

• Data integration issues.

• Data violating the business rules.

Systems of effective data analysis require high data quality that reflects the real world
correctly and are free of the above-mentioned glitches. Such quality can be achieved by
preprocessing the raw data before analysis, i.e., while collecting and/or after writing it
into the system’s dataset ( [Swapna et al., 2016]). It is about detecting errors in data and
eliminating them in the upmost early stage. This preprocessing stage is referred to as Data
Cleaning and is an important step in any data analysis system. Data cleaning is about
defining strict rules of what clean data is, and then applying automated data-cleaning
tools to ensure that the data is under constant validation and auditing to maintain a
high level of data integrity and correctness. This becomes a challenging process if dealing
with big data, where the scale and complexity of the data makes the cleaning process
more difficult. In many decision systems, data cleaning consumes about 80% of the time
required during the analysis process. Still, the benefits of data cleaning are huge if the
correctness of the analysis depends on the quality of the data. In one example related to
a system of data classification, the result’s accuracy is increased by 100% by cleaning
the data first ( [Ganapathi and Chen, 2016]). Moreover, a study found that the cost
of bad data reached in the year 2006 about $30 billion. These include the cost of lost
opportunities and wrong decisions based on bad data ( [Lee, 2007]).
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1. Introduction

Data cleaning makes use of different technique like data parsing (e.g., syntax errors),
type mapping (e.g., casting), removal of duplication, and statistical methods for data
analyses (e.g., mean value, standard deviation, clustering algorithms, imputation, etc.).
Data cleaning focuses mainly on detecting data anomalies and missing entries, and then
replacing them with plausible values. Among many techniques and methods used for
cleaning, imputation is one of the frequently used ones. Imputation works by correcting
anomalies and missing entries through replacing these data errors with plausible ones.
One method of data imputation is by manually replacing the missing data via expert
users, another is regression imputation where a regression model is used to predict
the value of missing data entries based on the available data. Beside achieving data
quality, data cleaning is also used to identify and attach meta-information to the data,
which can be beneficial for the data analysis later ( [Swapna et al., 2016]). The different
techniques and approaches used for data cleaning are applied to many types of data
sources such as text files, spreadsheets, databases, semi-structured data files (e.g., XML),
log files, etc. Moreover, data cleaning is used in different types of applications like big-
data systems, data mining, data warehousing, legacy systems integration, and machine
learning applications as well.

In this work we are trying to enhance the framework VISPLORE to aid the user in the
process of data cleaning through a user-friendly UI by allowing users to manually delete
or replace faulty data entries. The framework will also properly visualize and represent
certain DQ metrics that are relevant to the user. These DQ metrics, also referred to
as meta-information, will allow the user to form a comprehensive understanding of the
data, which can affect the decisions made for data analysis and data cleaning. All the
developed features for data cleaning and meta-information visualization are showcased
in the Table Lens View, which is one of the many data visualization viewing modes
provided by VISPLORE. Our focus will be on structured datasets (e.g., relational tables),
which are one type of data representation. Other types of data, which are beyond the
scope of this work, include semi-structured (e.g., XML) and unstructured data (e.g., data
expressed in natural languages) ( [Batini and Scannapieco, 2006]).

This work consists of six chapters. After this introduction, the second chapter will
provide a detailed overview on the state of the art of the topics related to DQ and data
cleaning being applied in this work. The third chapter gives a detailed description of
VISPLORE, its main features and the different modes it provides for data visualization.
The Forth chapter describes the new functionalities added to VISPLORE to (i) support
the visualization of meta-data inside the table lens view, (ii) keep track of cleansed
data records inside the view by visualizing them differently, (iii) how these features will
function inside dashboards with multiple views, and (iv) how these features will enhance
the visualization and readability of different data attributes. In chapter five, we will
evaluate the added features and discuss the challenges we faced during this work. Finally,
the last chapter summarizes the key outcomes of the achieved work and gives an outlook
to future activities.
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CHAPTER 2
Data Quality and Data Cleaning

The processing of big data for the purpose of generating key performance indicators
and extracting system development trends for data-based decision support requires
the assurance of high quality of data that implies among others cleaning and insuring
consistency of the processed data.

2.1 Data Quality

2.1.1 Data Quality Definition

Data quality (DQ), is a property that describes datasets. A dataset is of a high quality
if (i) it fits its intended usage, (ii) it correctly represents real-world values, and (iii)
its content is consistent by using the same format and structure for example. Another
definition for DQ is: a characteristic that describes the reliability and usability of the
data ( [Dasu and Johnson, 2003]). In many modern ICT systems, DQ became a new
functional requirement for the design of such systems, where these systems require sound
and complete data to deliver reliable results. Lots of business these days relies on big
data analysis for decision making, and any decision can be heavily affected by the quality
of the analyzed data. Data-driven decision systems operating on incorrect data will
deliver wrong results, which will cause wrong decisions being made and thus economic
losses ( [Ganapathi and Chen, 2016]). A study found that the cost of bad data in the
year 2006 was nearly $30 billion. These costs include the cost of lost opportunities and
wrong decisions based on bad data ( [Lee, 2007]).

Errors that affect the data quality exist in the form of data noises or data glitches, the
former are random and accidental errors introduced to the data due to human mistakes or
failing measurement instruments, whereas the latter are errors introduced systematically
to the data such as unreported changes in the layout or format of the data that causes
parts of the system to operate on wrong data. Both data glitches and data noises are
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2. Data Quality and Data Cleaning

also referred to as dirty data ( [Swapna et al., 2016], [Hellerstein, 2008]). Examples for
dirty data include:

• Errors in the data such as typos.

• Missing entries.

• Dummy values such as dummy email addresses used for online account registration.

• Inconsistent values that are contradicting with other values.

• Faulty entries, where the representation of an entity x does not match its actual
value in the real-world.

• Cryptic or hidden data.

• Data violating the business rules.

• Non-unique IDs.

The above-mentioned data errors can slip into operational data in many ways, either
during the data collection stage in the form of data entry errors and measurement errors,
during the data preprocessing and preparation stage in the form of distillation errors
(i.e. errors that occur when raw data are summarized before entered into the database,
to reduce the size or to perform some statistical analysis), or during the integration
of multiple data sources from different systems in the form of data integration errors
( [Hellerstein, 2008]).

Any system is prone to such types of dirty data, making DQ an important aspect for
consideration in many data processing systems. When working with big data, Data
quality issues presents a challenge toward making big data operational in businesses, one
of those challenges is how to perform data cleaning on such big data. In data warehouse
systems the impact of dirty data is huge because new data are constantly loaded into
the system to keep the data fresh, and thus the quality of the data needs to be insured
before loaded into the warehouse to achieve reliable results ( [Rahm and Do, 2000]). DQ
is also important in data mining systems, machine learning systems as well as traditional
database application systems ( [Swapna et al., 2016]).

While all the previously mentioned dirty data effect DQ, missing data will be a major
focus in this work because of the bias that could be introduced to the analysis by missing
data, especially when missing entries are replaced with wrong default values. A frequently
occurring instance of missing data many analyses must deal with, is the presence of a
huge number of missing records in a time-series dataset. In Section 4.2 we will examine
some of the techniques used to handle missing entries in datasets.

6



2.1. Data Quality

2.1.2 Types of Data

To form a comprehensive understanding of DQ, the issues related to it, and how to fix
them, we first need to understand the different types of datasets. Depending on the type
of data in question, different tools and techniques can be applied to fix DQ issues, as well
as different metrics for measuring DQ. In the following we will review the most common
types of datasets found in many analysis systems, and the DQ challenges associated with
them ( [Dasu and Johnson, 2003]):

• Federated data: A dataset that results from joining (merging) data from multiple
sources together, a practice mainly done in enterprises. The type of problems that
can arise in this type of data are improper joins and conflicts.

• High dimensional data: Massive and big data, which raises the challenge of scala-
bility and performance.

• Descriptive data: A dataset that consists of multiple tables with relationships
between them. The challenge with this type of data is to keep it consistent and
up-to-date to reflect the actual state of the system, e.g., resources’ data tables must
reflect the actual state of the inventory in a company.

• Time-series data: Also referred to as longitudinal data, a series of data records
ordered by time such as the gas consumption for a city over the course of a year,
such data could be then used for forecasting future behaviors. Data errors that
could arise in time series data is related to synchronization issues, i.e., improper
correlation of time series data. DQ issues related to time-series data have a high
priority when it comes to data cleaning because data corruptions that occur over
time can propagate to other data sources. Time-series data were used very often in
this work, as most of the provided data samples contained time-series data (e.g.,
gas consumption, temperature readings, solar radiation, etc.).

• Streaming data: A sequence of data that get emitted at a high rate from a data
source and are then accumulated. Temperature readings measured at hourly
intervals and accumulated over the course of a year is an example for streaming
data.

• Web data: Also referred to as scraped data, are data collected from various sources
on the internet such as usage information extracted from web server logs. The
internet is a major source of data, where lot of reports, statistics and other types of
information get posted for easy access. The data found there however is typically
messy since it does not have a uniform structure and is hard to integrate with other
systems. Web scraping tools are mainly used to extract data from the web, which
then needs to be cleaned because of low DQ. Data records like 2i2-555-i2i2 instead
of 212-555-1212 or “my last name at domain dot com” instead of name@domain.com
are typical examples for DQ issues found in web data.
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2. Data Quality and Data Cleaning

Another classification of data is based on the type of data attribute ( [Hellerstein, 2008,
Dasu and Johnson, 2003]):

• Numeric attributes, also referred to as quantitative attributes, are numerical values
(integers and floats) that measure the quantity of an attribute such as the number
of employees, or the temperature. Statistical methods can be used to control the
quality of this type of attributes.

• Text and categorical attributes: data attributes that are stored in the form of
names or codes. Categorical attributes have no ordering between the values, and
each dataset can use a different namespace for its categorical values (e.g., a “vehicle”
in one dataset is called a “car” in another one). This prevents statistical methods
from being applied to categorical attributes, and instead most of the approaches
used to maintain the quality of this kind of data are context dependent and require
a lot of scripting. Another example for DQ issues related to text attributes is when
‘0’s are replaced with ‘o’s in address attributes or phone numbers.

• Descriptive attributes: patterns and statistical models that can be used with
numeric and text attributes are not applicable here most of the time and require
instead sampling techniques and human validation (e.g., “Is equipment A really
located at the geographical address mentioned in the database?”).

2.1.3 Data Quality Metrics

While the defining criteria for high data quality in a given system are context dependent
and subject to the application domain and the user’s needs, certain data quality constrains
are common and relevant to any datasets:

• Completeness: is a characteristic that describes the operational dataset containing
no missing records, for example, having some customers’ birthdate missing in the
dataset. Another definition of completeness is “the extent to which data are of suf-
ficient breadth, depth, and scope for the task at hand” ( [Wang and Strong., 1996]).
The opposite to complete data is data with missing entries, although sometimes
missing might indicate that the actual value of an entry is irrelevant, and therefor
omitted.

• Validity: a data value is valid if it complies with the domain and business rules, for
example, the uniqueness of a data field across the dataset.

• Accuracy: describes how accurate the stored data is compared to its original source.
For example, how accurate are a sensor’s temperature readings. The opposite to
accurate data is faulty.

• Non-duplication: the data has a one-to-one relation between the real-world objects
and the stored records. This metric is sometimes also referred to as uniqueness.
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2.1. Data Quality

• Consistency: similar data follow the same rules across the system, so that the
recorded data does not cause any conflicts with other data or with business rules.
For example, date records in the dataset should be using the same date format.

Other DQ constraints that are more specific to certain analyses and applications are:

• Derivation integrity: the correctness of data generated from combining multiple
data pieces.

• Definition conformance: any data object should have complete details of the
real-world object.

• Accessibility: data is always accessible on demand.

• Timeliness: data is kept up-to-date and stored with correct time stamps.

• Interpretability: the presence of metadata alongside the data, so that the user can
understand and interpret the meaning of the data correctly.

• Suitability: the data being used is suitable and relevant for the analysis (e.g., not
using outdated data).

• Extent of automation: requiring the least amount of manual intervention to complete
a process.

• Successful completion of end-to-end process: does the data being used in the process
deliver the correct outcome.

All the above mentioned DQ constraints are usually referred to as DQ dimensions or DQ
metrics ( [Dasu and Johnson, 2003]). In this work, we will deal very often with the DQ
metrics valid, missing, and faulty, as the sample data often suffer from DQ issues related
to these metrics.

As mentioned in the previous section, each type of data brings its own set of problems
and challenges when it comes to maintaining a high level of DQ. For example, descriptive
data require DQ metrics to be continuously validated, which can be an expensive process
if dealing with big- and fast-growing data. Streaming data on the other hand require
DQ metrics to be checked in real-time, which can become more challenging if we do not
have access to the data stream all at once. Scraped web data, usually stored as text data
(e.g., CSV, CLF), require information retrieval methods and natural language models to
check the DQ metrics, making the process highly domain specific and challenging.
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2. Data Quality and Data Cleaning

2.1.4 Measuring Data Quality

After establishing the definition for DQ and specifying the set of metrics that make data
of high quality, we can measure the DQ in each dataset. While the correctness of an
analysis can be measured by the number of faulty outcomes, DQ is measured by how
much of the data comply with the static constraints, i.e., schema and key constraints in
a DB, and the dynamic constraints enforced on the data, i.e., business rules. This varies
depending on the DQ metric that is being measured. Below is how the most common
metrics are measured:

• Accuracy: generally hard to measure especially if dealing with huge data. Sampling
can be used, which can however introduce bias in the measurement.

• Uniqueness: can be measured by applying duplication removal techniques, and
then counting the number of removed records.

• Completeness can be roughly estimated by taking a sample of the data and mea-
suring the number of nulls and missing entries in it.

• Extent of automation can be measured by the number of clicks provided by the
user in the GUI.

• Successful completion of end-to-end process can be measured by sampling of some
process instances and observing the outcome.

• Accessibility: measured by the time between issuing a request to access the data
and being able to view the data.

2.1.5 Causes for DQ Issues and How to Prevent Them

DQ issues can arise for different reasons and during different workflow stages of all
information systems, and by avoiding some of these practices or altering them many
DQ issues can be prevented ( [Ganapathi and Chen, 2016]). Examples for practices that
could result in DQ issues:

• Ad-hoc instrumentation: collecting data indirectly through a proxy, like measuring
users’ satisfaction with a software product based on upgrade adoption rates. Outliers
in the collected data could result from misinterpretation of the data collected
indirectly, e.g., from a survey. To overcome such an issue, automated data collection
tools must be integrated into data processing systems like sensors in cyber physical
systems (CPSs).

• Inconsistent data: occurs when humans are involved in the creation of the data.
The correctness of the input data can be affected by the user interface perception,
system’s defaults, or having too many options for the user to choose from. Having
too many optional fields for the user to fill in could result in a lot of null values,
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2.1. Data Quality

which affects the quality of the data. The solution to this type of issue is to use a
combination of human and computational data entry, using drop-down lists with
predefined options in case of manual data creation and carefully choosing default
values.

• Unclear ownership of data: as datasets and analysis reports get forwarded to, used
and altered by multiple parties, it gets hard to keep track of the original owner
and creator of the data as well as the most up-to-date version of the data. If the
data contained unclear or ambiguous portions, it would be hard later to explain
the meaning of those records if information on the original creator of the data gets
lost over time, e.g., former employee. This type of issue can be resolved technically
by introducing a versioning and auditing system to track changes and ownerships
over time.

• Disconnection between data engineers and data consumers: in many data systems,
the person who consumes the reports and analysis is different from the one who
creates them. Miscommunication between the two could result in data quality and
performance issues. This can be fixed by making the data platform easier to use
by the average user and proper communication between the data engineers and
stakeholders.

On the other hand, some practices have been proven to be successful when it comes to
avoiding DQ issues in businesses that rely on big data to operate:

• Elevate data as an organizational-wide asset: data quality issues increase as data
get exposed to new systems and users beyond the original intended use. When an
organization connects multiple data sources of different departments together, data
quality issues can be mitigated as analysis results can be validated against multiple
data sources.

• Address business process issues that affect data quality: such as miscommunication
between data consumer and data engineers, inconsistent data collection or neglecting
certain measurements while collecting data.

• Being data-informed without overly relying on data: the captured data sometimes
does not tell the entire story, which is way it is important to relay on human
expertise.

• A role for centralized data teams: migrating the data sources and data processing
tools of different departments to a centralized platform can address data quality
issues easier.

In the next section we will explore different data cleaning techniques used for handling
DQ issues.
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2.2 Data Cleaning

2.2.1 Data Cleaning Definition

Data cleaning, also called data cleansing, data scrubbing and sometimes referred to as
data preprocessing, is any processing done to raw data before analysis (not in real-time),
whether while collecting the data or after writing it into the system’s dataset. The
purpose is to remove dirty data entries from the dataset to achieve a high data quality
( [Swapna et al., 2016, Hamad and Jihad, 2011]), which in return benefits the analysis.
In one instance in a system for classifying data, the result’s accuracy is increased 100% by
cleaning the data first ( [Ganapathi and Chen, 2016]). In a fraud prediction system, the
detection rate has improved from 62% to 91% by cleaning the data first before applying
the machine learning model ( [Chu et al., 2016]). Data cleaning is an expensive process
that consumes between 30% to 80% of the analysis time ( [Ganapathi and Chen, 2016,
Dasu and Johnson, 2003]). The process of data cleaning becomes especially challenging
if dealing with dig data where the data are constantly evolving, and their scale and
complexity makes the cleaning process more difficult ( [Chen and Jiang, 2014]).

Data cleaning is all about defining strict rules for what clean data and what faulty
data are (the definition of data error, error detection), and then applying automated
data-cleaning-tools to correct and clean the data (sometimes cleaning can be performed
manually by humans). Beside achieving data quality, data cleaning is used for analyzing
the data to identify and attach meta-information to the data. The existence of meta-
information, ormetadata, is important for the data cleaning process because metadata
can be used to write data cleaning rules and constraints to enforce DQ metrics. Metadata
are extracted by analyzing the data using data profiling and data mining, another way
to obtain metadata is manually by domain experts. Data profiling works by analyzing
individual data attributes, and can deliver meta-information such as data type, value
range, frequency, uniqueness, occurrence of null, etc. Data mining on the other hand
analyzes large datasets to discover meta-information across multiple attributes, which
can be used to generate business rules to fill up missing values ( [Rahm and Do, 2000]).

Data cleaning techniques are used in many information systems such as data mining,
machine learning, and data warehouse systems ( [Swapna et al., 2016]). Depending on
the type and size of the data, different cleaning approaches and techniques are required
to achieve data quality. For example, if we are working with linear aggregations such
as the average, data cleaning can be ignored, as the results can be correctly estimated
from small, clean samples of the overall data. This however fails when working with
complex systems such as machine learning and statistical model-building systems, as
results obtained from small samples of the data might contradict with results from the
aggregate (Sampson paradox).
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2.2.2 Data Cleaning Types

As mentioned earlier, based on the size, the type of data, the type of errors and the
DQ metrics that are targeted, different cleaning methods are applied. One of the most
applied methods is to distinguish between qualitative and quantitative data cleaning
( [Hellerstein, 2008]).

• Qualitative data cleaning uses constraints, rules, or patterns to detect errors in the
data. For example, qualitative data cleaning can detect a variation in the salaries
of two employees with the same employment level.

• Quantitative data cleaning uses statistical methods to detect outliers in the data.
For example, using standard deviation and the mean value, quantitative data
cleaning can detect salary anomalies.

2.2.2.1 Qualitative Data Cleaning

Qualitative data cleaning is sometimes also referred to as rule-based data cleaning
or constraints-based data cleaning ( [Chu et al., 2016]). In this cleaning approach for
detecting errors in the dataset we specify: (i) the type of errors we want to capture, (ii)
which techniques will be used for that, and (iii) at what stage in the business intelligence
(BI) stack will those techniques be applied (Figure 2.1). Normally integrity constraints
(ICs) are mainly used to improve the quality of the database schema and not the data
itself. By using integrity constraints ICs to define data quality rules, we can detect a
variety of data quality issues such as missing values, integrity and inconsistency in the
data. One of the most common integrity constraints used are functional dependencies
(FDs) in relational databases. Beside functional dependencies, integrity constraints
include other types of constraints:

• An extension to FDs called conditional functional dependencies (CFDs) is proposed,
where the dependencies satisfy a pattern and apply conditionally to a subset of the
relation and not to the entire relation as opposed to FD ( [Bohannon et al., 2007]).
CFDs are useful if integrating datasets from multiple resources, where dependencies
from a subset would only hold conditionally in the integrated dataset.

• Denial constraints (DCs) use first order logic to express constraints that contain
order predicates (e.g., “If two persons live in the same state, the one earning a
lower salary has a lower tax rate”), or to express constraints that compare different
attributes in the same predicate (e.g., “It is not possible to have a single tax
exemption higher than the salary”). Both these constraints cannot be modeled as
FD/CFD and that is where DC come into use ( [Chu et al., 2013]).

• Key constraints as another example of ICs, are constraints applied to data attributes
to prevent null or duplicate values from being entered. Key constraints can be used
to detect duplications or missing values in a dataset.
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These dependencies and constraints can be deployed to validate the source data against
quality violations, or during the data processing stage to discover anomalies in the target
data once business logic rules become available, for example, constraints on total budget
can only be enforced after aggregating cost and expenses.

Figure 2.1: Classification of qualitative error detection techniques and where to apply
them ( [Chu et al., 2016]).

Integrity constrains require domain experts to formulate the constrains, mostly in logical
form, which is hard to be done by the average user. One proposed approach for an
interactive and user-friendly data cleaning system, FALCON, uses SQL update queries
(SQLU) to generate the cleaning rules and perform the data cleaning ( [He et al., 2016]).
While Integrity constrains rules define data errors as violations and detect them but
without providing any fixes, SQLU goes a step further beyond the error detection by
providing deterministic fixes to the data. FALCON can be used by non-expert users and
contains no predefined data cleaning rules. With FALCON, the user can detect some
data quality issues (e.g., by browsing the data) and then provides a fix for the issues,
which gets translated to an SQL update statement. The system can then suggest a list
of additional fixes (SQL update queries, some of which are valid and others invalid), and
once the user verifies one of them, that fix will be applied to the rest of the data and the
suggestion list will be refined.

Once the error detection stage is completed, it is time to repair (clean) the data. Like
in error detection, three questions need to be answered before we can determine our
repairing strategy:

1. What to repair : do the actual data need to be repaired, the integrity constraints
such as obsolete business rules, or both the data and the integrity constrains? And
if the actual data need to be repaired, will we handle one error type at a time or
multiple types?
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2. How to correct: is the correction process fully automated or is a human involvement
required? And if a human is involved, is it to verify the repairs or to train a machine
learning model that can make correction decisions?

3. Where to repair : either the operational database is modified and repaired, or a model
that describes the possible repairs to the databased is build. The first approach
results in destructing the original database, whereas in the second approach queries
are answered against the repairing models and the data are left unmodified.

While most of the cleaning techniques are fully automated and do not require a human
intervention like detecting FD violations ( [Chu et al., 2016]), other techniques may
require a human operator at some stages in the cleaning process. Other systems for
detecting and cleaning data duplicates are proposed that use crowdsourcing platforms
to assign batches of data to human operators, to detect duplicate entries in the data
( [Gokhale et al., 2014, Wang et al., 2012]).

2.2.2.2 Quantitative Data Cleaning

Quantitative data cleaning is also known as statistical-based data cleaning. In systems
with large data, statistical techniques can be applied to the data to build a model (code)
that can discover patterns in the data to solve problems and make predictions. Systems
that use this process are called machine learning (ML) systems. Large datasets can boost
the training of ML models, which results in more accurate predictions, but with large
data the ML model will be exposed to more dirty data, which can affect the reliability of
the ML model. Cleaning the training data first can increase the ML model’s reliability
noticeably. In this perspective for data cleaning, the focus is on repairing duplicated,
missing, and erroneous values by applying cleaning techniques and algorithms based on
statistical analysis methods:

• Active learning in crowdsourcing: while crowdsourcing is actively being used in data
cleaning, i.e., where human participants get assigned tasks for cleaning the data
such as validating businesses phone numbers and verifying new information and
facts, large data and crowds are hard to scale in such systems. That is where active
learning as an algorithm gets applied to select a sample of records to be cleaned
by the crowd, and then use those cleaned records as a training set to train a ML
model that cleans the rest of the data ( [Gokhale et al., 2014, Wang et al., 2012]).

• Aggregate queries: in large datasets, processing aggregate queries such as sum,
count, and avg can take a lot of time. Sampling-based approximate query processing
(SAQP) techniques are used to get fast results by applying aggregate functions
to a sample of the data. The effectiveness of this technique can can be lower if
the sample contains dirty data. Since cleaning the entire dataset is not a feasible
solution, the best approach is to clean the sample data, as in the SampleClean
framework ( [Wang et al., 2014]).
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• Machine learning: as described earlier, the presence of dirty data in the training
dataset for a ML model will affect the reliability of the model. ActiveClean selects
the most valuable and clean data to update the ML model gradually instead of
retraining it ( [Krishnan et al., 2016]).

2.2.3 Data Cleaning Concept

One approach for data cleaning identifies the different stages of data usage, since each
stage can have a different effect on the DQ, and then multiple techniques for data cleaning
are implemented at each stage. Data usage can be divided into six stages as follows
( [Dasu and Johnson, 2003]):

1. Data Collection: problems at this stage can result from manual data entry,
no uniform standards for data format, measurement errors, and replacing mea-
sured/recorded data with approximations. The best approach to handle DQ issues
at this stage is preemptively, preventing DQ issues from entering the data in the
first place. For example, the use of integrity constraints, defaults, drop-down lists,
etc. The other approach is retrospective, cleaning dirty data. For example, using
data cleaning tools for duplicates removal, normalization, etc.

2. Data Delivery: DQ issues at this stage can result from inappropriate data prepro-
cessing (converting nulls to defaults), loss or alteration of data during transmission.
The solutions to DQ issues at this stage: building reliable transmission protocols,
verification (e.g., checksums), and verifying the data flow into the system to detect
errors and then tagging them.

3. Data storage: the main causes of DQ issues here are missing metadata and inappro-
priate data models (i.e., missing timestamps, incorrect normalization, etc.). Some
of solutions to handle these issues are by incorporating metadata and analyzing
the data to detect issues.

4. Data integration: is the stage at which data from different sources, mainly with
different structures, are combined. Problems at the data integration stage can occur
when integrating heterogenous data (e.g., different formats, no common key), legacy
data (e.g., spreadsheets vs. SQL tables), or if dealing with time synchronization
(e.g., Does the data refer to the same time window?). The solutions to integration
issues would be in the use of integration tools and approximate matching.

5. Data retrieval: here, problems will result from not understanding the data and thus
retrieving the wrong data, for example, join mistakes in an SQL select statement.
Understanding the structure of the data and the relationship between the tables
will prevent retrieval problems.

6. Data analysis and processing: insufficient domain expertise, the scale of the data,
and performance issues, all can cause of problems during the data analysis stage.
The solution to problems here is mostly context dependent.
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Another more general approach for data cleaning applies the DQ metrics and rules to
the data after they are aggregated, and before analyzed and processed by the system,
as follows: The first step in the process is to gather the data from all the different
sources such as data collected from sensing devices, files and the web. Then the data gets
aggregated and loaded into the analysis system. Finally, the data is validated against
schema specifications (static quality constraints) such as key uniqueness and functional
dependencies, followed by the validation of the business rules and other DQ metrics
(dynamic constraints). The last step is the most important step and is deeply context
dependent and requires close interaction from domain experts. Data faults and glitches
that get detected in the process are corrected if possible, and the clean data satisfying
the quality metrics will be used to quantify and measure the DQ to generate statistics
about the data (e.g., the percentage of missing data) and to identify the sources of
dirty data (e.g., certain data files or sensors). Moreover, any lessons and knowledge
acquired from the previous steps can be fed back into the system to improve the DQ
constraints and rules (Figure 2.2). Regardless of the approaches used for data cleaning
(i.e., when and where to perform cleaning), the actual cleaning techniques and methods
used (i.e., how to perform the cleaning) are determined by many factors comprising: (i)
the type of data source such as text files, spreadsheets, or SQL databases, (ii) the type
of data entries to be cleaned such as numerical, strings, or other types of date values,
and (iii) the type of data issues such as missing, duplicated, erroneous, or dummy data)
( [Swapna et al., 2016]).
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Figure 2.2: Systematic concept for the process of data cleaning.

In Figure 2.2, after data are aggregated in a single data source, different DQ constraints
(integrity constraints, business rules, duplicates removal, etc.) are applied to obtain a
cleaner version of the data. The quality of the cleaned data is then evaluated to generate
statistics and new knowledge about the cleaning process, which can be used to modify
the DQ constraints with the help from domain experts. The cleaning process can be
repeated until the required DQ metrics are met.
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2.2.4 Data Cleaning Techniques

Some basic data cleaning techniques involve using dictionaries to fix misspellings and
typos in data entries, address books to correct wrong addresses, and zip codes and
attribute dependencies (e.g., birthdate/age) to fix wrong values or fill in missing ones.
Standardization of values such as date/time format, upper/lower case for text fields, etc.
can avoid and fix many data quality issues ( [Rahm and Do, 2000]). In this section we
will outline the various techniques and mathematical methods used for cleaning different
types of data issues ( [Dasu and Johnson, 2003]).

2.2.4.1 Missing Data

Missing data is one of the most common data issues in many datasets and handling
missing data is a major task before performing data analysis. Missing values and entries
in data can originate from multiple sources such as data segments getting lost during
transmission, omitting some data entries by mistake if manually entering data, faulty
sensors or measuring instruments that fail to capture some data. Another source for
DQ issues arises when using the same value to represent defaults and missing values.
Not always does a missing entry in a dataset mean that a data attribute is missing due
to some errors in measurement or storage, rather than it might not be relevant. For
example, a customer not subscribed to a service, omitting such entry will not affect
the completeness matric of the data. In all cases, it is important to examine whether
missing data may lead to bias in the analysis because increasing amount of missing data
will cause more threat to the study. The most practical approach to mitigate the effect
of missing data to an analysis is to increase the sample size to compensate the losses.
Other approaches toward missing data are to delete data records with missing values
or estimating the missing values. In retrospective studies for example, like using data
from patient medical history, missing data here are very expected. Of course, deleting a
large amount of missing data may lead to bias because we are excluding cases that are
associated with those missing entries which could affects the study. In federate datasets
for example, anywhere between 30% to 70% of the data would be lost if we deleted all
data records with a missing field. Therefore, researchers must be careful when they delete
data or replace them with predicted values. Also, since missing data does not occur
randomly and are mostly a sign of a problem in the system, analyzing the missing data
could help us identify the cause of the issue such as discovering a faulty device that is
not transmitting/collecting readings. There are multiple techniques and methods in use
to detect missing data such as:

• Performing simple checks of the data during the transmission and storage to identify
any missing values, and then referring to the source data for correction. For example,
number of files and their sizes, number of records and attributes, etc.

• Using historical information to validate the correctness of data, e.g., a sensor device
known to deliver n readings in one hour, but is now sending less readings.
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• Validating the data against accurate estimates such as total counts, averages,
medians, and other values.

• In time series data, when using the same value (0 for example) to represent both
defaults and missing values, the flip-flop pattern can be used to identify weather a
value is missing or set to the default value.

Beside ignoring or removing data records with missing fields, data imputation can be
used to replace missing values. Data imputation is the process of guessing the value of a
missing entry and replacing it with the guessed value. One of the simplest imputation
techniques is point estimate that estimates the value of a missing attribute while ignoring
any relation it has to other attributes, such as using the mean or median value to replace
missing entries. Another more complex imputation technique uses regression methods to
impute multiple values and accounts for the relationships between attributes. Regression,
also known as statistical imputation, is applied to predict missing values by considering
the variable with missing data as the dependent variable, and all cases with no missing
data are used to generate the regression equation. The resulted equation then can be
used to estimate the missing values, as in the following example:

Weight Age Height Health index
20 2 10 5
15 5 9 3
25 5 10 MISSING
20 4 MISSING MISSING
10 1 MISSING MISSING

Height = α + β1Age + β2Weight
Height = α + β1Age + β2Weight + β3Height

Where α is the error term and βi are the regression coefficients.

Different error terms α can produce multiple regressed values for the imputation, which are
then analyzed and combined to produce a single reliable value set. Other imputation tech-
niques include cold-deck imputation, hard-deck imputation, probability distribution-based
imputation, replacing with unknown, constant value ( [Musil et al., 2002, Huisman, 2000]).

Another technique fills up missing entries using an algorithm called decision tree induction
( [Dara and Satyanarayana, 2015]). For each attribute (column) in the dataset a decision
tree will be constructed. The root of the tree is the data attribute in question and
the nodes represent tests (questions) for the other data attributes. Each node has two
branches: yes or no. The missing entries will be filled using the leaf nodes (Figure 2.3).
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Figure 2.3: Employee age decision tree.

2.2.4.2 Incomplete Data

Usually data is labeled as incomplete if the whole data originally exists but part of it is
systematically omitted upon storage or delivery. Incomplete data is somehow like missing
data when it comes to the affect it has on the analysis by causing bias and uncertainty.
Two types of incomplete data are to be distinguished: Censored and truncated data.
“Censored data are data and measurements that come with uncertainty, because of some
missing data or the lack of measuring tools.” ( [Dasu and Johnson, 2003]). Data are
censored if the values of some data entries are replaced with other estimates, either
because the actual values are irrelevant, e.g., all annual incomes above 100K will be
treated the same and reported as ≥ 100K, or hard to capture, e.g., a scale that cannot
measure above 100 kg will give the same estimate readings for all weights above that
boundary. If we were replacing censored data with defaults, for example, the analysis
could give inaccurate results. Using histograms such anomalies can be identified in
the form of spikes in the histogram as seen in Figure 2.4. On the other hand, data
are truncated if portions of the data that lay beyond a boundary value are neglected
and removed from the dataset altogether, e.g., customers who spend less than a certain
amount a year get dropped from the database. Unlike censored data, in truncated data it
is not just the variable of interest that we do not have full data on, all the data from
that case are dropped from the dataset.
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Figure 2.4: Data anomalies such as censored data can appear in a histogram as spikes
( [Dasu and Johnson, 2003]).

2.2.4.3 Duplicates

When merging and integrating data from multiple sources the biggest problem is dupli-
cated data, i.e., overlapping data, which needs to be solved by data cleaning. Duplicates
elimination is usually performed on multiple data sources, cleaned in advance, as follows:
similar records that refer to the same real-world object are identified first, and then
merged into one record that contains all the relevant attributes without redundancy.
The challenge with duplicate elimination is how to match similar records, referred to
as the instance matching problem ( [Rahm and Do, 2000]). The simplest case is if each
data record has a unique identifying attribute such as a primary key: in the case of a
single data source, data records are sorted based on the identifying attribute first, next
neighboring records in the sorted data are checked for match. For multiple data sources,
data are joined first before sorted and then matched. In the absence of identifying
attributes, fuzzy matching is used to identify similar records based on some defined
matching rules (often measured by a numerical value between zero and one). For example,
one matching rule could determine that two person-records are the same if portions of
the name and address match. Wildcards, character frequency, edit distance, and other
techniques are useful for fuzzy matching string attributes.

2.2.4.4 Dummy Data

Dummy data are data that contains no useful information and only act as placeholder,
for example, dummy email addresses used for online accounts registration. There are no
specific techniques for detecting and fixing dummy data. Every system can define some
patterns and categories specific to the business domain and then deal with the dummy
values accordingly, either by replacing them with useful values or by ignoring the dummy
values in the analysis process altogether ( [Swapna et al., 2016]).
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2.2.4.5 Outliers

An outlier is an observation that lies an abnormal distance from other values in a random
sample from a population (Figure 2.5). There are many reasons for outliers like Some
entries in the sample are extreme or data were scaled incorrectly, also an error could
be occurred during data entry. Sometimes outlier could be a true of a rare occurrence
or seems to noticeable affect the results, in this case the results of analysis should be
reported with and without outliers. Otherwise, it is better to remove outliers if they
do not affect the data or cause bias. If the outliers occurred due to an entry mistake,
assigning them to new values like mean could be an appropriate approach.

Figure 2.5: Example for an outlier in a sample set ( [Dasu and Johnson, 2003]).

2.2.5 Examples for Data Cleaning Systems

• One advanced data cleaning system uses a parallel algorithm developed in MapRe-
duce ( [Chen and Jiang, 2014]) that runs on a distributed system, where the massive
data is distributed among many clusters and analyzed in parallel to find missing or
inconstant data and clean it.

• In data warehouse systems, data cleaning is an important task to perform before
loading the data into the data warehouse to insure correct and reliable reporting
and analysis results. Usually the process of data cleaning in data warehouse systems
involves the following steps:

– Combining data from multiple sources into one homogeneous data structure.
– Removing redundant values.
– Resolving inconsistencies in data due to heterogenous data sources (e.g.,

unifying measurement units, data format, etc.)
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Many techniques to ensure DQ in data warehouse systems are applied in practice
( [Hamad and Jihad, 2011]). First a set of rules for each data attribute in a data
source will be defined, these rules will be used later for the purpose of data cleaning.
Beside the set of rules, a list of all the data attributes related to a data attribute
is also defined. All the data attributes involved in the cleaning process here are
quantitative attributes. Once the data is loaded into the warehouse, the user
will select what data attributes to load, and the algorithm will use the rules
related to the selected attributes to check the data against many types of errors
such as formatting errors, lexical errors, constraints violation, missing entries and
duplication, and then correct them. The list of related attributes mentioned earlier
is used in conjunction with the rules to fill in missing entries and correct faulty
values. In an employee database, the salary attribute would have the following
attributes related to it: {Base salary, Position fees, Childs Number, Service years,
Degree}, and the following set of rules:

– Salary must be numerical
– Not negative
– Not missing
– Salary = f(Basesalary, Positionfees, Childs, Serviceyears,Degree)

When loading the data into the warehouse, the above rules and attributes will be
used by the system to detect dirty data and perform data cleaning on the salary
attribute. As we can see, the related attributes are used here by the rules to fill in
missing salary entries.

• The decision tree induction algorithm described earlier in 2.2.4.1.

• FALCON, an interactive and user-friendly data cleaning system, mentioned earlier
in 2.2.2.1, which uses SQL update statements (SQLU) to generate cleaning rules
and perform cleaning on a database( [He et al., 2016]). For any given update query:

UPDATE Table_T SET Attribute_A = correct_value WHERE X = t[X]

Where X is an arbitrary subset of attributes of relation R, which can range
from the empty set ∅ to all attributes in R. The number of possible repair rules that
can be derived from such a query is 2|R| : where |R| is the arity of the relation R
(the number of attributes). If the user detects a data quality issue (e.g., by browsing
the data), she can provide a manual fix for that issue, which gets translated to a
SQL update statement. All the possible repair rules, i.e., update queries, that could
be derived from the user’s fix will be organized in a lattice graph (Figure 2.6) that
shows the containment relation between different repair rules. For any two repair
rules Q1 and Q2, the most specific rule (query) is a rule contained by both Q1 and
Q2, in other words, a rule that covers all the common records updated by Q1 and
Q2. The most general rule is a rule that contains both Q1 and Q2, in other words,
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a rule that covers all the records updated by both Q1 and Q2. The edge from node
Q to Q́ (each corresponds to an update query) indicates that Q is contained in Q́
(denoted by Q ≤ Q́). Consequently, if a rule is marked as valid by the user, then all
rules contained in it are also valid, and if a rule is marked as invalid than any rule
containing it will be invalid, i.e., if one query is valid, then any query that is more
specific is also valid; conversely, if it is invalid, then any query that is more general
is also invalid. As the user makes changes to the data, i.e., updates the data by
validating/invalidating suggested SQLU queries, and provides new configurations
for the system, i.e., new where condition in the SQLU queries), the search space
will become dynamic.

Figure 2.6: Lattice graph showing SQLU queries, and the containment relations between
them ( [He et al., 2016]). D, M, L and Q are abbreviations for the attributes (Date,
Molecule, Labor, Quantity) of a data table. Each node represents an update query with
D, M, L, Q indicating the attributes that appear in the WHERE clause, and the number
of records affected by the update query. Red nodes represent invalid queries invalidate
by the user, blue nodes are maximal (most general) valid queries, and the rest are valid
queries.

2.2.6 Data Cleaning Challenges and Future Works

From the previous systems and approaches used to clean data and maintain the DQ, we
can summarize some of the challenges in the data cleaning process ( [Chu et al., 2016,
He et al., 2016, Chu and Ilyas, 2016]):

• Scalability of data cleaning techniques to big data and rapidly growing data, while
maintaining accuracy and performance.
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• User engagement in the data cleaning process, such as collecting the user feedback
to identify new data quality rules.

• Semi-structured data sources like XML, CSV files and unstructured data sources
such as text files present a big challenge when cleaning data because their lack of
schema. Schema-based data sources such as databases can use integrity constraints,
triggers, and other schema related constraints to enforce data quality metrics. Such
constraints are missing in data sources without schema ( [Rahm and Do, 2000]).

• In the era of CPSs, the increasing number of sensors poses a challenge for data
quality and data cleaning.

• If personal data are involved in the cleaning process, privacy becomes a concern.

• Create fast cleaning systems with continuous user interaction, especially if dealing
with large-scale data with many attributes.

Some of the trends and future work in the data cleaning domain that are worth
pointing out are:

• Introducing new integrity constraint languages that can help the user define stronger
data quality rules to detect additional types of data errors.

• Cleansing and maintenance of master data such as knowledge bases.

• Involving humans in new data cleaning domains other than duplications cleaning,
such as repairing integrity constraint violations.
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CHAPTER 3
VISPLORE: A VISual

exPLORation Framework for
Data Analysis

VISPLORE is an application framework developed by the Virtual Reality and Visualization
Research Center GmbH (VRVis) for visually supported knowledge discovery in large
and high-dimensional datasets. VISPLORE allows the user to visually represent big
and complex multivariate datasets using a variety of viewing modes such as table lens,
histogram, scatter plot, and many other views ( [Piringer et al., 2009a]). The wide range
of functions and tools provided by VISPLORE allow expert users in many application
fields, such as the energy sector, to solve a variety of tasks in analysis and statistical
modelling. Beside knowledge representation, visual data analysis in VISPLORE can be
used to detect anomalies in the data and to provide comprehensive overviews of the data
structure ( [Arbesser et al., 2017]). However, the broad range of functions VISPLORE
offers can overwhelm inexperienced users, hence comes the need for dashboards that offer
a selected set of functions and views, tailored for the needs of specific tasks and users.

3.1 Features
VISPLORE leverages multithreading techniques to support interactive exploration of huge
multivariant data in real time with little response time, even when working with millions
of entries and hundreds of dimensions. This continuous user interaction is supported
through a multithreaded architecture that splits the execution across two layers of
threads; the main application thread and the visualization threads. The application
thread handles user requests like triggering updates and changing parameters. The
visualization threads are responsible for handling expensive computations in the views,
where a new thread is spawned for each view ( [Piringer et al., 2009b]). VISPLORE
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provides more than ten visualization viewing modes that support many visualization
techniques for multivariant data, from 2d and 3d scatter plots to histograms and other
views. The user can assign data columns to views and then rearrange the columns within
the view. Multiple views can be linked together in VISPLORE to create task-tailored
dashboards. Datasets are imported into VISPLORE from multiple sources such as SQL
databases, Excel spreadsheets and CSV files. Any modifications made to the data in
VISPLORE can be exported to external data sources or copied to the clipboard.

3.2 Views
Multiple views are supported in VISPLORE for data visualization such as 2d scatter
plots, histograms and table lenses.

3.2.1 2d Scatter Plot

In a 2d scatter plot, the values of two data variables are assigned to the horizontal axis
(X) and the vertical axis (Y) of a diagram. The points of a diagram show the correlation
between the two variables. By using colored points, a 2d scatter plot can show a third
variable. A 3d scatter plot is an extension to the 2d scatter plot where variables and
their relationships will be visualized in a 3-dimentional space. The bottom-left view in
Figure 3.1 shows how a 2d scatter plot view is visualized in VISPLORE ( [Pfahler, 2015]).

Figure 3.1: A screenshot of VISPLORE showing a session with different views. The
bottom-left view is a 2d scatter plot, and the bottom-right view is a table lens view.
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3.2.2 Table Lens

Figure 3.1 (the bottom-right view) shows the table lens view in action. A dataset is
visualized as a table, with each data attribute being displayed as a column in that table.
The table can be sorted in an ascending or descending order based on a column, and
the columns can be rearranged as needed. Each cell in the table lens displays the data
value as percentage bar relative to the maximum value in the current column, and on the
far-left of a cell a small flag called the per-value meta-information flag (or the validity
flag) is displayed to indicate the status of the data entry (i.e., valid or missing). Zooming
out of the table lens view allows the user to view more data rows until each the data
column in the view is displayed as a vertically-oriented histogram, as seen in Figure 3.2
(the bottom-right view).

The table lens view represents one of the basic modes for data visualization in VISPLORE.
Our focus in this work will be on the table lens view, as all the new features are added
to this viewing mode, and all the results from this work will be illustrated through table
lens views.

Figure 3.2: A screenshot of VISPLORE showing a session with different views. The
bottom-right view shows a zoomed-out table lens view, where each data column is
visualized as a histogram.
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3.2.3 Histogram

Histogram is a plot that shows the frequency distribution of continues data such as
numerical values. Histograms are used to relate and visualize multiple variables (data
columns), making histograms suitable for data inspection to detect outliers and to
visualize the distribution of data, both of which are easy to spot by the user. Spikes
and V-shaped valleys in a histogram indicate problems in the data such as inexplicable
preponderance of a given value or data being lost. Outliers in the data are those that
appear in sparsely populated areas, not in the company of other data points. Figure 3.2
(the bottom-right view) shows the visualization of a histogram in VISPLORE.

3.3 Dashboards
Dashboards are user interfaces that resemble the functionality and purpose of a dashboard
in a car, they combine information in a single board and present them in an organized,
easy-to-read manner. Using a variety of data visualization elements (i.e., diagrams, charts,
and coloring legends), dashboards can visualize key performance indicators (KPI) to help
the users comprehend and monitor multiple information at a glance, which can support
the user to accomplish large workflow tasks ( [Elias and Bezerianos, 2011]). Dashboards
are designed in collaboration with domain experts (e.g., data analysists in the energy
sector) and tailored to fit the expert’s needs. Dashboards can visualize multiple views
in a single window, which provide a comprehensive overview of the data being used to
perform a specific analysis. The design of the dashboard is subject to the data and the
workflow. The number of views to be displayed can vary based on the use case. Too
many views can make the dashboard cluttered and hard to comprehend, while the right
number of views can increase human cognition and enhance information understanding
( [Arbesser et al., 2017]). VISPLORE provides task-tailored dashboards (Figure 3.3) that
contain a collection of multiple visualization views, such as table lenses and scatter plots,
to help users solve a given task.
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Figure 3.3: Dashboard in VISPLORE combining multiple views: correlation, scatter plot,
and time series view.
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CHAPTER 4
Work Tasks and Problem

Description

DQ metrics are represented as meta-information attached to the source data when loaded
into VISPLORE, e.g., extra columns beside each data column when working with Excel
spreadsheets as in Figure 4.110. Our focus will be on the following types of DQ metrics
in VISPLORE:

• Imputed: indicates that an entry holds a value that is set by some means of
imputation.

• Valid: indicates that an entry holds a valid value.

• Missing: indicates that an entry has no value.

• Accounted: indicates that an entry holds a value that was calculated by other
values.

• Faulty: indicates that an entry has a wrong value.

• Manually replaced: indicates that an entry has a value that was set manually by a
user.

This work addresses two research topics: (i) expanding the framework VISPLORE to
support the visualization of above mentioned DQ metrics in the table lens view and (ii)
integrating selected techniques in VISPLORE for data cleaning that enables the user to
mark data entries as implausible and to correct data errors interactively, while keeping
track of this cleaning process.
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4.1 Data Quality Visualization

When importing a dataset into VISPLORE, all meta-information (e.g., valid or missing)
attached to the imported dataset will be loaded into the system as well. Data columns
(referred to as Channels in VISPLORE) can have multiple binary masks associated to
them, where each mask represents a meta-information type. For instance, if a data
channel has the binary mask faulty assigned to it, then each bit field in the mask will
indicate whether its corresponding data channel entry is marked as faulty or not (a
TRUE/1 value indicates the entry is marked as faulty, FALSE otherwise), as shown in
Figure 4.1. Our focus will be on the following meta-information types: imputed, valid,
missing, accounted, faulty and manually replaced.

Figure 4.1: A snapshot from an Excel datasheet showing different data columns (high-
lighted in blue), and alongside each column the meta-information masks associated to it
(in green).

In VISPLORE, valid and missing are regarded as special meta-information types. When-
ever a new data channel is loaded into the system, a binary channel named validity is
created and linked to the newly added data channel. The validity channel reflects the
content of the data channel, whether a data entry has a value or is empty (null). Using
the validity channel, the two meta-information types valid and missing can be easily
deduced using the binary operation bitwise NOT , i.e., swapping 0s for 1s and vice versa.
In other words, the name valid is used to describe the meta-information binary channel
in the source data as in Figure 4.1, while the name validity refers to the binary channel
created by VISPLORE when loading a data channel into the table lens.

Prior to our work, the table lens only supported the visualization of two types of per-value
meta- information: valid and missing. Since those two meta-information types are
mutually exclusive (i.e., a data entry can either exist or not), a single binary channel
(the validity channel) was adequate to represent both valid and missing. Until now, the
validity flag (mentioned in 3.2.2) was only used to display a single meta-information type,
either valid or missing. The behavior of the validity flag was hard-coded into VISPLORE
to be dark gray for valid data entries and white for missing ones.

We started by adding support for the visualization of a new type of meta-information:
imputed. The validity flag is called from now on the meta-information flag, because it is
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now capable of displaying the imputed status, which is an additional meta-information
type, beside valid and missing. Imputed is visualized by coloring the validity flag in blue.
However, the meta-information flag is not capable yet of displaying multiple per-value
meta-information per data cell. If the meta-information type imputed exists for a data
cell, the flag will be displayed in blue only.

The next step in our work is to introduce a new approach in terms of per-value meta-
information visualization, by dividing the quad reserved for the meta-information flag
into multiple colored trapezoids, one per each meta-information type as shown in Figure
4.2. We choose to divide the flag into trapezoids and not rectangles because they have
the advantage of better visibility in a flag with too many meta-information types, since
all the lines dividing the flag will have a consistent slope regardless of number of meta-
information per flag. This way, per data cell, the visualization of multiple per-value
meta-information can be combined into a single flag.

Figure 4.2: Different cases for meta-information flags divided into multiple trapezoids to
allow the visualization of many per-value meta-information types, each type is allocated
a unique color. In case of a single meta-information per cell, the flag is a single colored
quad.

The CategoricalColoring class serves as a catalog providing unique coloring for each
meta-information type when rendering the table lens. When the table lens is created, the
CategoricalColoring class will be initialized with the two basic meta-information types
valid and missing, and as new data channels are mapped (or unmapped) to the view,
the CategoricalColoring class will be updated with all the per-value meta-information
types contained in that channel. This will result in the CategoricalColoring class being
up-to-date with all the meta-information types in the view. The colors are assigned
randomly to each meta-information type, with valid and missing being hard-coded
into VISPLORE to remain dark gray and white respectively as before. With multiple
meta-information types being visualized now, a color legend is added at the top of the
table lens to indicate the color for each meta-information type in the view. To keep the
UI as simple as possible, the color legend will be hidden if only the meta-information
valid and missing are present. The user also has the option to disable the visualization
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of per-value meta-information types altogether with a simple toggle, which will revert
the visualization of the meta-information flag back to its initial state , i.e., white quads
for missing values and dark gray quads for valid ones and ignoring any other type of
meta-information.

4.2 Data Cleaning
In this work, all the data cleaning techniques added to VISPLORE allow the user to
perform manual data cleaning, rather than automated and automatic cleaning. Any
cleaning performed on the data will only modify the internal copy of the imported data
(i.e., cached data) and will not be committed to the original data source (e.g., Excel
file) unless the user chooses to export the data to an external source. The first method
for data cleaning allows the user to select multiple data cells in the table lens and then
perform the action set as missing. This will cause the values for the selected data entries
in the view to be replaced by the value missing and the corresponding binary entries in
the validity channel for each data entry will be set to false, i.e., the meta-information
type missing is attached internally to those data entries and not to the original data
source. To keep track of whether a data entry is originally missing when imported into
VISPLORE or is marked as missing by a user later, we differentiate between two types of
missing meta-information. Explicit missing denotes entries marked as missing by users
through the set as missing action, while implicit missing is for those entries that are
already missing when imported (nulls). The second method for data cleaning allows
the user to manually set the value of a data cell in the table lens. A popup box will
prompt the user for input to replace the value of the selected data cell(s). This cleaning
method is an experimental feature and is partially supported, so the meta-information
type manually replaced is not attached to the modified data entries. Only the editing of
numerical and time entries is supported as string values (text and categorical entries) are
translated to categorical types when imported into VISPLORE.

Replacing data values with nulls (or MISSINGs) can be considered a form of data cleaning.
The basic idea is to detect anomalies and outliers in the data and then to replace them
with empty values. In a later stage, suitable techniques for filling up missing entries will
be applied for cleaning such as replacing empty values with defaults or using regression
analysis to estimate the missing values. How to clean and replace missing values however
is beyond the scope of this work. The data processing and visualization mentioned above
are limited to table lens, with the main emphasis on time-series data and numerical values.
This type of cleaning falls well within the category of quantitative cleaning mentioned
earlier. Visualizing all the per-value meta-information can enhance the readability of
the table lens, which allows the user to get a comprehensive understanding of the data
resulting in better decisions regarding data analysis and cleaning.
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CHAPTER 5
Discussion

In this section we will (i) discuss the implementation details, (ii) evaluate the work
that was done, and (iii) discuss the challenges during the implementation of the added
features.

5.1 Implementation

Most of the implementation work is done on the backend side, so not a lot of changes are
visible to the user. A large part of the work is to create an efficient cache, which lives
in the table lens’s backend, to be used by the frontend when rendering the view. The
cache stores the meta-information for all the data entries in the current view, i.e., all
the data cells in the table lens view. In many cases we are dealing with large datasets
(e.g., 100k records in some instances), where each data entry can have up to six types of
meta-information attached to it. This requires a dynamic data structure to store all this
information, while keeping the footprint of the cache minimal.

For each data channel loaded into the view, we compute and cache the number of meta-
information types that exist in a data channel (i.e., the uniquely identified types). By
caching this number, we can skip the rendering of the trapezoids (described in 4.1) if
the number of meta-information types in a channel is zero. We also store the occurrences
of all meta-information types in a data channel as a list of vectors, one for each meta-
information type in the channel, similar to the boolean vector for validity in section
4.1. For each data channel, a vector caches the number of meta-information types that
exist per data entry in a channel. As the cache needs to remain up-to-date, any changes
made to the table lens view or other views will invalidate the cache, which will notify the
backend to rebuild the cache again.
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5.2 Evaluation
With the above design of the table lens view’s cache, all the data required to visualize
the meta-information are cached in the backend of the view. Using the cache, many
calculations required for rendering the view can be skipped, which allows the frontend to
render faster. Since all the caching is done in the backend of a view, which runs in a
separate thread, the overhead of maintaining the cache is reduce and the rendering will
not be affected every time the cache is invalidated. Since we are mostly storing binary
data in the cache, memory usage is minimal even if we are working with large datasets.

When testing the performance and memory consumption of the table lens view with large
datasets, while both enabling and disabling the visualization of the extra meta-information
types in the flags, the responsiveness of the view (and VISPLORE as well) remains similar
to the state of the application before implementing the new features. The animation
while scrolling through the data and zooming in and out of the view remains smooth,
and the response time remains well beyond the 100 milliseconds threshold. Although the
response time did increase a few milliseconds due to the additional information inside
the flags that need to be rendered, the overall performance and responsiveness of the
table lens view remains fast and well perceived by the user.

5.3 Challenges
The challenge in this work was to create an efficient cache, which stores all the meta-
information for all the loaded data, to speed up the rendering of the view, while keeping
the cache up-to-date whenever a change is made to the data or the view. Any modification
to the table lens view such as setting an entry to missing, adding a new data channel to
the view, or removing a channel will invalidate the cache and trigger an event, which will
cause the cache to be updated again.

Another challenge we had to deal with was the distinction between entries that are
originally missing when importing the data, and entries that are set as missing by the
user during the analysis of the data. While using explicit missing to refer to the former
case and implicit missing for the latter solves the issue, it causes some inconveniences
since many features related to missing data are hard-coded into VISPLORE.

Choosing the proper layout to divide the new flag was also challenging, as it is important
to maintain a high readability for the flags in the table lens view, especially in the case
of too many data entries and multiple meta-information types per entry (i.e., three and
above). We choose to divide the flags into trapezoids as they provide consistency across
flags with multiple meta-information.

The last challenge was that the visibility of the table lens view was affected by the visual-
ization of the new meta-information types, as too much information were being visualized
to the user, especially within dashboards. Hence we choose to hide the visualization of
the meta-information by default. If the user needs the additional information, he/she
can choose to toggle the visualization of the extra information on.
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CHAPTER 6
Conclusion and Outlook

In this work we reviewed the criteria for clean data and how clean data is a critical
requirement in any information system to obtain reliable analysis results. For example,
in a system for data classification, the classification’s accuracy is increased by 100%
via cleaning the data first. We also addressed the most common data problems that
affect the quality of data and how to detect these problems, such as missing data entries,
duplicates and other data issues. We outlined the types of data cleaning: qualitative and
quantitative cleaning, and the techniques used to fix data problems such as regression
analysis for filling up missing entries.

The practical part of this work, realized in VISPLORE, focused on integrating selected
techniques into the framework to enable the users to correct certain data errors interac-
tively in the table lens, while keeping track of the cleaning process. Besides, the work
allowed the visualization of per-value meta-information types to present more useful
information in the table lens. This feature helps the user to understand the status of data
entries and thus to decide what entries need to be cleaned and how. Further features are
considered as part of future work on VISPLORE. The first is to allow the user to perform
in-place editing of data values in the table lens. Another one would allow the user to
enable/disable the visualization of certain meta-information types individually and to
manually pick the coloring for each meta-information type. An additional feature is to
partly support the automatization of tagging implausible values with meta-information
without the user’s intervention, and to suggest plausible values for manual cleaning when
automatic cleaning fails.
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